

Grado en Física (curso 2025-26)

Física	Cuántica II	Código	800513	Curso	3°	Sem.	1º
Módulo	Formación General	Materia	Física Cuántica y Estadística	Tipo		obligatorio	1

	Total	Teóricos	Prácticos
Créditos ECTS	6	3.5	2.5
Horas presenciales	55	30	25

Resultados del aprendizaje (según Documento de Verificación de la Titulación)

- Comprender el significado del operador momento angular y el espín en física cuántica. Manejar el acoplo de dos momentos angulares.
- Entender el concepto de partículas idénticas en mecánica cuántica. Comprender el significado del principio de exclusión de Pauli.
- Manejar los métodos básicos de la teoría de perturbaciones independientes del tiempo y aplicarla en diversas situaciones.

Breve descripción de contenidos

Momento angular y espín. El principio de exclusión de Pauli. Métodos aproximados.

Conocimientos previos necesarios

Es importante que el alumno posea conocimientos básicos sobre el formalismo de la mecánica cuántica. También debe conocer y manejar las relaciones de conmutación, los autovalores y autofunciones del momento angular orbital. Asimismo debe saber resolver la ecuación de Schrödinger con pozos tridimensionales tales como el oscilador armónico o el potencial 1/r.

Profesor/a	Juan Manue	n Manuel Rodríguez Parrondo				EMFTEL
coordinador/a	Despacho	03.216.0	e-mail	parrondo@ucm.es		n.es

Teoría/Prácticas - Detalle de horarios y profesorado								
Grupo	Aula	Día	Horario	Profesor	Fechas	horas	T/P	Dpto.
Α	МЗ	M,J	9:00 – 11:00	Francisco Javier Cao García	Todo el cuatrimestre	55	T/P	EMFTEL
В	10	Мо	10:00 – 11:00	Javier Rubio Peña	Full to me	43	T/E	FT
(inglés)	19	We Th	10:30 – 12:00 11:00 – 12:30	Álvaro Álvarez Domínguez	Full term	12	Е	FT
С	МЗ	M,J	15:00 – 17:00	Fernando Ruiz Ruiz	Todo el cuatrimestre	55	T/P	FT

D	19	X V	15:30 – 17:30 15:00 – 17:00	Armando Pérez	Relaño	Todo el cuatrimestre	55	T/P	EMFTEL
E	19	L M,J	16:30-17:30* 17:30 - 19:00	Juan Rodríguez	Manuel Parrondo	Todo el cuatrimestre	55	T/P	EMFTEL

T:teoría, P:prácticas

(*) El grupo E, tras tres clases en horario de 18:00-19:00 pasará a impartirse de 16:30-17:30, los lunes.

	Tutorías						
Grupo	Profesor	horarios	e-mail	Lugar			
Α	Francisco Javier Cao García	M y J: 11:00-12:30 Contactar por correo	francao@ucm.es	03.260.0			
В	ESTE GRU	PO SE IMPARTE EN INGL	ÉS (ver ficha correspondie	nte)			
С	Fernando Ruiz Ruiz	M, X, J: 11:30 - 13:30	ferruiz@fis.ucm.es	03.315.0			
D	Armando Relaño Pérez	L , X: 11:00-13:00 Las 2 horas restantes, online o previa petición de cita por correo electrónico	armando.relano@fis.ucm.es	01.110.0			
E	Juan Manuel Rodriguez Parrondo	1er. cuatrimestre L, X : 11:00 a 13:00 Resto online 2º cuatrimestre M: 12:00-13:30 X: 16:00-17:30 Resto online	parrondo@ucm.es	03.216.0			

^{*} Resto hasta 6 horas a través del campus virtual, correo electrónico, ...

Programa de la asignatura

- Repaso y ampliación del formalismo de la Mecánica cuántica. Estados y observables. Espacios de Hilbert: vectores, producto escalar y operadores. Medición y colapso cuántico. Ecuación de Schrödinger y evolución unitaria. Sistemas compuestos: producto tensorial. Definición del operador densidad.
- **Espín y sistemas de dos niveles**. El experimento de Stern-Gerlach y el espín del electrón. Comportamiento del espín en presencia de un campo magnético.
- **Momento angular**. Definición general y espectro del momento angular. Matrices de espín. Momento angular orbital.
- Adición de momentos angulares. Un ejemplo: adición de dos espines ½. Caso general: coeficientes de Clebsch-Gordan.
- **Partículas idénticas.** Indistinguibilidad y simetrización de funciones de onda. Sistemas de N partículas. Partículas sin interacción: números de ocupación.
- **Perturbaciones estacionarias.** Desarrollos perturbativos. Caso no degenerado. Caso degenerado. Aplicaciones a las correcciones de las energías del átomo de hidrógeno.
- Método variacional. Descripción general del método. Aplicaciones.
- **Perturbaciones dependientes del tiempo.** Hamiltonianos dependientes del tiempo. Perturbaciones. Transiciones al espectro continuo: regla de oro de Fermi. Reglas de selección.

Bibliografía

Básica:

- Claude Cohen-Tannoudji, Bernard Diu y Frank Laloë, Quantum Mechanics Vols I, II y III. Segunda edición, Wiley 2019.
- Stephen Gasiorowicz, Quantum Physics 3rd edition, Wiley 2003.

Complementaria:

- David J Griffiths, *Introduction to Quantum Mechanics* (2nd edition), Prentice Hall 2005.
- Donald D. Fitts, *Principles of quantum mechanics, as applied to chemistry and chemical physics*, Cambridge University Press, 1999
- Benjamin Schumacher, Michael Westmoreland, Quantum Processes Systems, and Information, Cambridge University Press, 2010.
- Leslie Ballentine, Quantum Mechanics: A Modern Development, World Scientific Publishing 1998.
- M. Alonso y E Finn, *Física Vol III, Fundamentos Cuánticos y Estadísticos*, Fondo Editorial Interamericano 1971.

Recursos en Internet

Según grupos, Campus Virtual y páginas WEB.

Metodología

- Clases de teoría donde se explicarán los principales conceptos de la materia, incluyendo ejemplos y aplicaciones.
- Clases prácticas de problemas

Las clases de teoría utilizarán la pizarra o proyecciones con ordenador. La resolución de problemas tendrá lugar en la pizarra, con la posible participación de los alumnos. Se suministrará a los estudiantes una colección de problemas con antelación a su resolución en la clase. El profesor recibirá en su despacho a los alumnos en el horario especificado de tutorías, con objeto de resolver dudas, ampliar conceptos, etc. Es recomendable la asistencia a estas tutorías para un mejor aprovechamiento del curso. El material de la asignatura estará disponible para los alumnos en el Campus Virtual.

Evaluación					
Examen final	Peso: (*)	75%			

Se realizará un examen final que consistirá fundamentalmente en una serie de cuestiones teóricas breves y de problemas sobre los contenidos explicados durante el curso y de dificultad similar a los propuestos en la colección de problemas.

Para aprobar la asignatura será necesario obtener una nota mínima compensable de 4.5 en el examen final.

Otras actividades de evaluación	Peso: (*)	25%
---------------------------------	-----------	-----

En este apartado se valorarán algunas de las siguientes actividades:

- Entrega de problemas y ejercicios, individuales o en grupo.
- Resolución de dichos ejercicios en las clases de problemas.
- Controles y pruebas adicionales, escritas u orales.

Calificación final

La calificación final del curso será la mayor de las dos notas siguientes:

a) examen final.

b) media de la nota obtenida en el examen final (con un peso del 75%) y en el apartado "Otras actividades de evaluación" (con un peso del 25%).

En caso de obtener una nota inferior a la mínima compensable en el examen final, 4.5, la calificación del curso será la de examen final. La calificación de la convocatoria extraordinaria de julio se obtendrá siguiendo exactamente el mismo procedimiento de evaluación.